
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 326 (2009) 633–646
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Free vibration analysis of ring-stiffened cylindrical shells using wave
propagation approach
Lin Gan �, Xuebin Li, Zheng Zhang

Wuhan 2nd Ship Design and Research Institute, Wuhan, Hubei Province 430064, PR China
a r t i c l e i n f o

Article history:

Received 23 August 2008

Received in revised form

26 February 2009

Accepted 1 May 2009

Handling Editor: J. Lam
Available online 29 May 2009
0X/$ - see front matter & 2009 Elsevier Ltd.

016/j.jsv.2009.05.001

responding author.

ail address: glrain002@163.com (L. Gan).
a b s t r a c t

The wave propagation approach is used to analyze the free vibration of ring-stiffened

cylindrical shell under initial hydrostatic pressure, based on Flügge classical thin shell

theory and orthotropic method in this paper. The results obtained are compared with

those available in other literature. It has been proved that, free vibration analysis using

wave propagation approach with shear diaphragm–shear diaphragm (SD–SD) boundary

conditions is absolutely equal to the traditional method. To evaluate the validity and

accuracy of the wave propagation approach, an exact solution for arbitrary boundary

conditions is also proposed in this paper. The comparisons between these two

approaches are carried out for clamped–clamped (C–C) and clamped–shear diaphragm

(C–SD) boundary conditions. The results show that wave propagation has high accuracy

for long shell and large circumferential numbers.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Circular cylindrical shells are widely used in many structural applications such as airplanes, marine crafts and
construction buildings. Usually cylinders are stiffened by rings or stringers to increase the stiffness and strength, reduce the
weight of structure to be designed. Many investigations have been developed to analyze the vibration behavior of thin
cylindrical shells, e.g. Refs. [1–5]. These methods range from energy methods based on the Rayleigh–Ritz procedure to
analytical methods in which, respectively, closed form solutions of the governing equations and iterative solution
approaches were used. Most of the researchers take active interest in the vibration analysis of circular cylindrical shells
with shear diaphragm–shear diaphragm (SD–SD) boundary conditions, as the solution to the equations of motion has a
simple form of trigonometric functions which can satisfy the SD–SD boundary conditions exactly. For arbitrary boundary
conditions, many authors [6–10] have chosen exponential functions for the modal displacement along the axial direction,
substituted them into the equations of motion and then enforced the eighth-order frequency determinants which are
coupled together.

The wave propagation approach, which is a simple, non-iterative and effective method, has been used for vibration
analysis of thin cylindrical shells with different boundary conditions. Wang and Lai [11] used this approach to study the
vibration behavior of finite length circular cylindrical shells based on Love’s shell theory and gave an approximate method
for calculating the natural frequencies of finite length circular cylindrical shells with different boundary conditions without
simplifying the exact equations of motion. Zhang et al. [12] studied the vibration characteristics of thin cylindrical shells
using wave propagation approach based on Love’s shell theory, calculated the frequencies and compared the results by the
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Nomenclature

A2 sectional area of stiffener
br width of the rectangular stiffener
B stretching stiffness of the shell, B ¼ Eh

1�v2

d2 stiffener spacing
D bending stiffness of the shell, D ¼ Eh3

12ð1�v2Þ
e2 eccentricity of the centroid of the ring stiffener

section, e2 ¼
1
2 hþ hrð Þ

E modulus of Young’s elasticity
G shear modulus
h thickness of the shell
h̄ hþ A2

d2
hr height of the rectangular stiffener
i

ffiffiffiffiffiffiffi
�1
p

I0 sectional moment of inertia of the stiffener
about the centroid of the stiffener

I2 sectional moment of inertia of the stiffener
about the middle surface of the shell

J2 torsion constant of stiffener cross-section
k h2

12R2

km wavenumber in the axial direction (wave
propagation)

L length of the shell
m number of axial half-wave
n number of circumferential waves
Q external hydrostatic pressure
R radius of the shell
t time
x, y, z cylindrical coordinates (Fig. 1)
u, v, w components of the displacement in the x, y and

z directions
l axial factor
u Poisson’s ratio
r mass density
o circular frequency of shell
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wave propagation method and numerical finite element method. Zhang et al. have also extended this approach to coupled
vibration of fluid-filled shells [13], submerged shells [14] and cross-ply laminated composite shells [15]. Li [16] studied free
vibration of a circular cylindrical shell in vacuo using wave propagation approach based on Flügge theory, the result
obtained are compared with exact solution to evaluate the accuracy and validity of this approach and studied the
dispersion characteristics of circular cylindrical shell. Xu et al. [17–20] studied the power flow propagating in fluid-filled
shells using the wave propagation approach.

In this paper, the free vibration analysis of a ring-stiffened cylindrical shell under initial hydrostatic pressure is
investigated using wave propagation approach based on Flügge classical thin shell theory. The effects of ring stiffeners are
‘‘smeared out’’ over the surface of the shell, the stiffened shell can be modeled as an equivalent uniform orthotropic shell.
In the present method, the axial mode function of ring-stiffened cylindrical shell is approximately obtained from the beam
function with the same boundary conditions. The error may be introduced due to neglecting the coupling effect between
the axial and circumferential modes by using the beam function. In order to evaluate the validity and accuracy of the wave
propagation approach, an exact solution for free vibration of ring-stiffened cylindrical shell is also given in this paper. The
comparisons of these two methods for natural frequencies are carried out for ring-stiffened cylindrical shells with shear
diaphragm–shear diaphragm, clamped–clamped (C–C) and clamped–shear diaphragm (C–SD) boundary conditions. The
results show that wave propagation has high accuracy for long shell and SD–SD boundary conditions.
2. Equations of motion of ring-stiffened cylindrical shell

The ring-stiffened cylindrical shell under consideration has constant thickness h, radius R and length L. The reference
surface is taken at the middle surface of the shell where an orthogonal coordinate system (x, y, z) is fixed. The x coordinate
is taken in the axial direction of the shell, where y and z are, respectively, in the circumferential and radial directions of the
shell as shown in Fig. 1. The displacements of the shell are defined by u, v and w in the x, y and z directions, respectively. The
ring stiffeners and the shell consist of the same linear elastic material.
Fig. 1. Ring-stiffened cylindrical shell and stiffener.
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The equations of motion for cylindrical shell under hydrostatic pressure can be written using Flügge theory as
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The forces and moments are given in Appendix A. Letting the Q ¼ 0 in Eq. (1), the equations of motion in vacuo can be
obtained.

The displacements of the shell can be expressed in the form of wave propagation as follows:

u ¼ Um cos nyeiot�ikmx

v ¼ Vm sin nyeiot�ikmx

w ¼Wm cos nyeiot�ikmx (2)

where Um, Vm and Wm are the wave amplitudes of the displacement in the x, y and z directions, respectively, km and n are
axial wavenumber and circumferential modal parameter, o is the circular driving frequency.

Substituting Eq. (2) into Eq. (1), it can be written as

go2 � K11 K12i K13i

K21i go2 � K22 K23

K31i K32 go2 � K33

2
64

3
75

Um

Vm

Wm

8><
>:

9>=
>; ¼ f0g (3)

where Kij (i, j ¼ 1,2,3) are the coefficients, which are listed in Appendix B; g ¼ h̄rR2=B. For the non-trivial solutions, one set
the determinant of the characteristic matrix in Eq. (3) to zero

go2 � K11 K12i K13i

K21i go2 � K22 K23

K31i K32 go2 � K33

�������
������� ¼ 0; j; k ¼ 1;2;3 (4)

Expansion of the determinant of above equation provides the system characteristic equation

f ðkm;oÞ ¼ 0 (5)

where f(km, o) is polynomial function. Eq. (5) is used to calculate the natural frequency of the finite ring-stiffened
cylindrical shell. In order to calculate the frequencies, only the wavenumber km in the axial direction is needed to
determine. The right wavenumber km must be chosen to satisfy the boundary conditions at the two ends of the shell. In this
analysis the wavenumber in the axial direction of shell is approximately obtained by studying the vibration of a similar
beam of the same boundary conditions. Eq. (5) can be written as

o6 þ a1o4 þ a2o2 þ a3 ¼ 0 (6)

where ai (i ¼ 1, 2, 3) are the coefficients of Eq. (6), which are listed in Appendix C. Solving this equation, one can obtain
three roots, the lowest root represents the flexural vibration, and the other two are in-plane vibrations.

The beam’s wavenumber is used as the axial wavenumber of shell in this method, the error may be introduced due to
neglecting the coupling effect between the axial and circumferential modes. In order to evaluate the validity and accuracy
of the wave propagation approach, an exact solution for free vibration of the ring-stiffened cylindrical shell is presented
here. The displacements of shell can be written in the general form

u ¼ U0elx cos ny cos ot

v ¼ V0elx sin ny cos ot

w ¼W0elx cos ny cos ot (7)

where the axial factor l is a complex number.
Substitution of Eq. (7) into the equations of motion leads to an eight-order characteristic equation for l

g8l
8
þ g6l

6
þ g4l

4
þ g2l

2
þ g0 ¼ 0 (8)
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where gi (i ¼ 0, 2, 4, 6, 8) are real coefficients, which are listed in Appendix D. For the usual range of shell and stiffener
parameters and nZ1, Eq. (8) has eight roots as following:

l ¼ �l1; �l2i; �ðl3 � l4iÞ (9)

where li (i ¼ 1, 2, 3, 4) are real, positive numbers. The axial and circumferential modal coefficients can be written as

ai ¼
U0i

W0i
; bi ¼

V0i

W0i
; i ¼ 1;2;3; . . . ;8 (10)

These coefficients are calculated for these eight roots. Then, the displacements of shell can be rewritten as [6]

w ¼
C1el1x þ C2e�l1x þ C3 cos l2xþ C4 sin l2xþ C5el3x cos l4xþ C6el3x sin l4x

þC7e�l3x cos l4xþ C8e�l3x sin l4x

" #
cos ny cos ot (11)

where Ci (i ¼ 1, 2,y,8) are real independent constants, while u and v have the similar form of expressions which involve
combinations of the constants Ci and the real and imaginary parts of ai and bi.

At each end of the shell, four boundary conditions must be specified, these constraints consist of all combinations of the
following:

u ¼ 0 or Nx ¼ 0

v ¼ 0 or Rx ¼ Nxy �
1

R
Mxy ¼ 0

w ¼ 0 or Sx ¼
qMx

qx
þ

1

R

qMyx

qy
þ

1

R

qMxy
qy
¼ 0

qw

qx
¼ 0 or Mx ¼ 0 (12)

Substituting the rewritten displacements into these constraints lead to the system characteristic equation

½A�8�8fCig
T ¼ f0g; i ¼ 1;2;3; :::;8 (13)

where A is an 8�8 coefficient matrix whose rows depend on the boundary conditions. Forsberg [6] and Warburton [8]
presented different solving methods for this equation.

Three different boundary conditions of the ring-stiffened cylindrical shell are studied in these two approaches: SD–SD,
C–C and C–SD boundary conditions. The wavenumber for wave propagation and constraints of boundary conditions of shell
are listed in Table 1.

The nondimensional frequency parameter is defined as

O2
¼
rð1� u2ÞR2h̄

Eh
o2 (14)

3. Numerical results and discussion

The wave propagation approach is firstly utilized to calculate the natural frequencies of a ring-stiffened cylindrical shell
with SD–SD boundary conditions. The computation model is a ring-stiffened cylindrical shell with evenly spaced and
uniform stiffeners eccentricity. An example is given with the geometrical dimensions and material properties of the shell
and stiffeners listed in Table 2, there are three kinds of stiffeners with different cross-section heights, hr1 ¼ 0.291�10�2 m,
hr2 ¼ 0.582�10�2 m and hr3 ¼ 0.582�10�2 m, respectively. The circular frequencies of free vibration in vacuo obtained
here are compared with those from other literature in Table 3, where a value of m ¼ 1 is used and n are chosen from 2 to 5.
The next example for the free vibration in vacuo of a ring-stiffened cylindrical shell is also given here. The geometrical
dimensions and material properties of shell and stiffener are listed in Table 4, and the comparison of the natural
frequencies for this case are carried out with the experimental results and also the analytical results by energy method of
Table 1
Wavenumber and boundary conditions.

Boundary conditions of shell Wavenumber Constraints

Shear diaphragm–shear diaphragm (SD–SD) KmL ¼ mp v ¼ w ¼ Nx ¼ Mx ¼ 0, x ¼ 0, L

Clamped–clamped (C–C) KmL ¼ (2m+1)p/2
u ¼ v ¼ w ¼

qw

qx
¼ 0, x ¼ 0, L

Clamped–shear diaphragm (C–SD) KmL ¼ (4m+1)p/4
u ¼ v ¼ w ¼

qw

qx
¼ 0 x ¼ 0

v ¼ w ¼ Nx ¼ Mx ¼ 0, x ¼ L



ARTICLE IN PRESS

Table 2
Geometrical and material properties of a stiffened shell.

Characteristics Geometrical dimensions and material properties

R (m) 10.37�10�2

h (m) 0.119�10�2

L (m) 47.09�10�2

hr (m) (three kinds) 0.291�10�2, 0.582�10�2, 0.873�10�2

br (m) 0.218�10�2

d2 (m) 3.14�10�2

E (GPa) 2.06

r (kg/m3) 7700

u 0.3

Stiffening type External

Table 3
Comparison of circular frequencies of stiffened shell o (rad/s) (m ¼ 1)

hr (cm) n (a) (b) (c) (d) Present

0.291 2 4550 4470 4314 4420 4409

3 3870 3655 3173 3680 3674

4 6550 5950 4565 6000 6000

5 10 000 9510 7058 9620 9604

0.582 2 4580 4450 4235 4481

3 6710 6235 4615 6492

4 12 830 11790 7982 12 149

5 20 120 19 020 12 660 19 694

0.873 2 5040 4885 4378 4954

3 10 330 9500 6651 9873

4 20 200 18 010 12 154 18 884

5 31800 25 570 19 221 30 606

(a) Basdekas and Chi [21].

(b) Galletly [22].

(c) Wah and Hu [23].

(d) Bosor (smeared rings) [24].

Table 4
Geometrical and properties of a stiffened shell.

Characteristics Geometrical dimensions and material properties

R (m) 4.9759�10�2

h (m) 0.1651�10�2

L (m) 39.45�10�2

hr (m) 0.5334�10�2

br (m) 0.3175�10�2

d2 (m) 1.9725�10�2

E (GPa) 68.95

r (Kg/m3) 2762

u 0.3

Stiffening type External

L. Gan et al. / Journal of Sound and Vibration 326 (2009) 633–646 637
other researchers in Table 5. In the comparison, m ¼ 1 and 2 are used and n are selected from 1 to 5. As can be seen from the
comparisons, good agreement with those in the literature is obtained; the wave propagation approach is convenient and
effective for SD–SD boundary conditions.

The shear diaphragm boundary condition, which corresponds to the homogenous end condition of a finite shell of
length L given as

Nx ¼ w ¼ v ¼ Mx ¼ 0; x ¼ 0; L (15)

and often loosely called the simply supported (SS–SS) condition, is the most widely used of the shell boundary conditions.
These conditions can be closely approximated in physical application simply by means of rigidly attaching a thin, flat,
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Table 5
Comparison of natural frequencies of stiffened shell f (Hz).

m n (e) (f) Experiment (g) Present

1 1 1199.58 1204 1216

2 1564.47 1587 1530 1635

3 4387.59 4462 4080 4578

4 8377.75 8559 8781

5 13 490.7 13 780 14172

2 1 3493.59 3498 3536

2 2113.84 2129 2040 2176

3 4400.58 4437 4090 4573

4 8392.63 8482 8731

5 13 508.9 13 695 14119

3 1 5839.89 5844 5907

2 3378.17 3386 3200 3430

3 4595.79 4627 4520 4788

4 8449.89 8438 7520 8728

5 13 555.4 13 595 14 069

(e) Jafari and Bagheri [25].

(f) Mustafa and Ali [26].

(g) Hoppmann [27].

L. Gan et al. / Journal of Sound and Vibration 326 (2009) 633–646638
circular cover plate at each end [5]. The plate is highly flexible in the z direction as well as in bending but has a large
stiffness in its own plane.

The traditional expressions of displacement which satisfy the SD–SD boundary conditions of shell exactly are given as
follows [6]:

u ¼ U cos
mpx

l
cos ny cos ot

v ¼ V sin
mpx

l
sin ny cos ot

w ¼W sin
mpx

l
cos ny cos ot (16)

where U, V and W are the wave amplitudes of the displacement in the x, y and z directions, respectively, m is number of
axial half-wave.

Substituting Eq. (16) into Eq. (1), the equations can be written as

go2 � K 011 K 012 K 013

K 021 go2 � K 022 K 023

K 031 K 032 go2 � K 033

2
664

3
775

U

V

W

8><
>:

9>=
>; ¼ f0g (17)

where K 0ij (i, j ¼ 1, 2, 3) are the coefficients, which are listed in Appendix E. For the non-trivial solution, the determinant of
this set of equations must be zero. A characteristic equation similar to Eq. (6) can be obtained from Eq. (17)

o6 þ b1o4 þ b2o2 þ b3 ¼ 0 (18)

where bi (i ¼ 1, 2, 3) are the coefficients of Eq. (18), which are listed in Appendix F.
Substituting the km ¼ mp/L for SD–SD boundary conditions into Eq. (6), a comparison is carried out between {a1, a2, a3}

of Eq. (6) and {b1, b2, b3} here, it can be found that

a1 ¼ b1; a2 ¼ b2; a3 ¼ b3 (19)

This result shows that Eqs. (6) and (18) are the same. The reasoning certainly seems to give a mathematical explanation for
the conclusion that, for a finite length ring-stiffened cylindrical shell under hydrostatic pressure with SD–SD boundary
conditions, the free vibration analysis using wave propagation approach is absolutely equal to the traditional method.

As can be seen from Eq. (5), the axial wavenumber km varies as the circumferential number n varies. However, km is a
constant number in wave propagation approach for the given boundary conditions. This assumption which neglects the
coupling effects between the axial and circumferential modes will introduce error certainly. The axial wavenumber of shell
is exactly equal to that of a beam only in SD–SD boundary conditions.
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Fig. 2. Error curves for frequency in vacuo L/R ¼ 4.54, m ¼ 1, hr1 ¼ 0.291 cm.
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Fig. 3. Error curves for frequency in vacuo L/R ¼ 4.54, m ¼ 2, hr1 ¼ 0.291 cm.
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In order to evaluate the accuracy of the wave propagation approach with other boundary conditions, the results from
wave propagation are compared with those from exact solution. A relative error parameter is defined as following:

ErrorO ¼
Owave �Oexact

Oexact
� 100% (20)

where the subscript wave and exact represent wave propagation method and classical exact method, respectively.
The first example above is used to study the relative error of free vibration frequencies with different shell and stiffeners

parameters. The boundary conditions at the two ends of shells are clamped–shear diaphragm and clamped–clamped,
respectively. The frequencies comparisons between these two methods are given in Figs. 2–10. The frequencies error can be
seen to be more significant at small circumferential number n than at large circumferential number. There is hardly any
influence of the boundary conditions at large circumferential numbers. The error for C–C boundary condition is much
higher than C–SD boundary condition when n is small. In fact, the coupling effects between the circumferential and axial
modes become less significant when the constraints at the end decrease.

The frequencies errors of free vibration of the ring-stiffened cylindrical shell in vacuo are shown in Figs. 2 and 3. For
m ¼ 1, the error is below 10 percent with nZ3 and the error of the frequencies between these two methods is very small
after n ¼ 4. While for m ¼ 2, the error is below 10 percent after n ¼ 4, the error is more significant than that of m ¼ 1.
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Fig. 4. Error curves for frequency (Q̄ ¼ 2� 10�4) L/R ¼ 4.54, hr1 ¼ 0.291 cm.
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L. Gan et al. / Journal of Sound and Vibration 326 (2009) 633–646 641



ARTICLE IN PRESS

1
-5

0

5

10

15

20

25

30

35

40

n

 internal-ring
 external-ring
 symmetrical-ringE

rr
or

 Ω
 (%

)

2 3 4 5 6 7 8

Fig. 10. Error curves for frequency of C–C boundary L/R ¼ 4.54, m ¼ 1, hr2 ¼ 0.582 cm.

L. Gan et al. / Journal of Sound and Vibration 326 (2009) 633–646642
In this paper, hydrostatic pressure is considered as the initial stress. The nondimensional hydrostatic pressure
parameter is defined as

Q̄ ¼
QR

Eh
ð1� u2Þ (21)

Figs. 4–6 show the frequencies comparisons with the nondimensional initial hydrostatic pressure
Q̄ ¼ 2� 10�4;6� 10�4;8� 10�4, respectively. It can be seen that as the n increases, the trend of the error decrease is
similar to that in vacuo, but slightly slower than it. For certain lower circumferential number n, the frequencies error of
ring-stiffened cylindrical shell under initial stress is lager than that in vacuo.

For short shells, the differences of frequencies between results obtained by the wave propagation method and the
exact solution are substantial. The coupling effects between axial and circumferential modes are more important
for short shells than that of long shells. Figs. 7 and 8 show the frequencies error varies with the ratio of L/R
for clamped–shear diaphragm, clamped–clamped boundary conditions, respectively. The maximum error value for
different circumferential mode decreases as n increases. For long shells with the two boundary conditions, the error is
always large for n ¼ 1. Considering the clamped–clamped boundary conditions, the error is below 10 percent in the range of
L/R47.2 for n ¼ 2; and in the range of L/R44 for n ¼ 3; and in the range of L/R42.4 for n ¼ 4; and in the range of L/R41.6
for n ¼ 5.

The effects of stiffness of stiffener and stiffening type on the frequencies error are shown in Figs. 9 and 10, respectively.
Fig. 9 illustrates frequencies comparison of stiffened shell with a stiffener cross-section higher of 0.582 cm; the stiffness of
ring becomes large as the height increases. Fig. 10 shows the relative error with C–C boundary conditions for different
stiffening types which are external, internal and symmetrical, respectively. Here the symmetrical is introduced to make a
comparison. The eccentricity of the centroid of ring stiffener e2 equals to zero as the cross-section of ring is symmetrical. As
the circumferential number n increases, the errors decrease for these three kinds of stiffening type.
4. Conclusions

The wave propagation approach is used to analyze the free vibration of ring-stiffened cylindrical shell under initial
hydrostatic pressure, based on Flügge classical thin shell theory and orthotropic method in this paper. The accuracy and
validity of the wave propagation approach is studied, through comparison for frequencies with those of exact solution. The
conclusions are obtained from analysis above.

The wave propagation approach is accurate for calculation of frequency of ring-stiffened cylindrical shell for SD–SD
boundary conditions, both the analytical and numerical methods prove that the wave propagation approach is absolutely
equal to the traditional method. For those other than SD–SD boundary conditions, some errors will be introduced due to
neglecting the coupling effects between axial and circumferential modes. The wave propagation method has high accuracy
for longer shell and large circumferential number n. The effect of initial stress makes the frequency error larger for some
certain lower circumferential modes.
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Appendix A. Forces and moments

Eight initial forces including membrane forces Nx, Ny, Nxy and Nxy, bending moments Mx and My, torsioning moments
Mxy and Myx are given
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where m2 ¼ EA2=Bd2, w2 ¼ EA2e2=Rd2B, Z2 ¼ EI2=Dd2, Zt2
¼ GJ2=Dd2, z2 ¼ w2ð12R2=h2

Þ.

Appendix B. The coefficients in the matrix of Eq. (3)
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Appendix C. The coefficients of Eq. (6)

a1 ¼ �
1
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Appendix D. The coefficients of Eq. (8)

g8 ¼ k k� 1þ
1

2

QR

B

� �
1� u

2
ð1þ 3kÞ �

1

2

QR

B

� �
R8

g6 ¼ � k
1� u

2
ð1þ 3kÞd1 �

1

2

QR

B
ðd1 þ d2Þ þ d2

� �
R6 þ ð3� uÞ1þ u

2
k2n2R6

þ 1�
1

2

QR

B

� �
1� u

2
ð1þ 3kÞ �

1

2

QR

B

� �
kð2þ Zt2

Þn2 �
1

2

QR

B

� �
R6 �

3� u
2

� �2

1�
1

2

QR

B

� �
k2n2R6

� k u� k
1� u

2
n2 þ

QR

B

� �
ð1� uÞð1þ 3kÞ �

QR

B

� �
R6 þ k2d2R6 � k

1þ u
2

� �2

n2R6

g4 ¼
1� u

2
ð1þ 3kÞd1 �

1

2

QR

B
ðd1 þ d2Þ þ d2

� �
kð2þ Zt2

Þn2 �
1

2

QR

B

� �
R4 �

1þ u
2
ðd3 þ d4ÞknR4

þ d5 1�
1

2

QR

B

� �
1� u

2
ð1þ 3kÞ �

1

2

QR

B

� �
R4 � 2kd2 u� k

1� u
2

n2 þ
QR

B

� �
R4 � k2 3� u

2

� �2

d1n2R4

� ð3� uÞ1þ u
2

u� k
1� u

2
n2 þ

QR

B

� �
kn2R4 þ u� k

1� u
2

n2 þ
QR

B

� �2 1� u
2
ð1þ 3kÞ �

1

2

QR

B

� �
R4

þ k
3� u

2
1�

1

2

QR

B

� �
ðd4 þ d3ÞnR4 � d1d2kR4 þ

1þ u
2

� �2

kð2þ Zt2
Þn2 �

1

2

QR

B

� �
n2R4l4

g2 ¼ d1d2 kð2þ Zt2
Þn2 �

1

2

QR

B

� �
R2 þ d5

1� u
2
ð1þ 3kÞd1 �

1

2

QR

B
ðd1 þ d2Þ þ d2

� �
R2

þ
1þ u

2
u� k

1� u
2

n2 þ
QR

B

� �
ðd3 þ d4ÞnR2 þ d2 u� k

1� u
2

n2 þ
QR

B

� �2

R2

þ k
3� u

2
d1ðd4 þ d3ÞnR2 � 1�

1

2

QR

B

� �
d3d4R2 þ d5

1þ u
2

� �2

n2R2l2

g0 ¼ d1d2d5 � d1d3d4

where

d1 ¼ go2 �
1� u

2
ð1þ kÞn2 þ

QR

B
n2 d2 ¼ go2 � ð1þ m2Þn

2 þ z2kn2 þ
QR

B
n2

d3 ¼ ð1þ m2Þn� z2kn3 �
QR

B
n; d4 ¼ �z2kn3 þ Z2ð�nþ n3Þkþ ð1þ m2Þn�

QR

B
n

d5 ¼ �kð1þ Z2Þn
4 þ kð2þ Z2 þ 2z2Þn

2 � kð1þ z2Þ � ð1þ m2Þ þ
QR

B
n2 þ go2
Appendix E. The coefficients in the matrix of Eq. (17)
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where b ¼ pR
L .

Appendix F. The coefficients of Eq. (18)
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